Designing precrease patterns for clean folding of tessellations and boxes

Michał Kosmulski

Conference for Creators 2020, Zaragoza

Motivation

Assumptions

- no cutting or glue
- only manual folding, but...
 - bone folder and similar tools are OK
 - ruler for dividing paper edge into N-ths is OK

Crease Pattern vs Pre-crease Pattern

Pre-crease Pattern (PCP) is ambigous

5 Triangle Twist

Basic vs clean PCP

CP vs clean PCP

PCP still has extra creases, but hidden

Clean PCP

- just one out of many possibilities
- affects the collapse (unlike CP)
- balance between perfection and practicality

A simple case

What is visible?

Eliminating some creases

Clean version

Clover Folding — in practice

- simple case
 - creases go all-through the sheet
 - no need to construct references in multiple steps
- using pinches to mark distances
- collapse of cleaned-up CP is harder...
- ...and takes more time

More difficult case

Starting with "perfect" PCP

17 Start with perfect PCP. Factorize the size of underlying grid. Here: $24 = 3 \times 2 \times 2 \times 2$

18 First-generation horizontal creases. Look for simple divisions (here: 24 grid \Rightarrow 8/24 = 1/3)

Second-generation creases: what can be easily constructed from what is already there?

20 Continue constructing creases. Mark pinches for use later. Some crease parts are not in original CP.

Fourth-generation horizontal creases

22 Copy fragment of crease from above using mirroring

23 First-generation vertical creases. Use same construction methods as for horizontal creases.

24 Second-generation creases and pinches for use in later steps

25 Third-generation vertical creases

26 Fourth-generation creases. Again, we crease some fragments not creased in perfect CPC.

7 Connect the dots to crease diagonals

28 Crease between two points (2 grid diagonals) and elongate to 3 grid diagonals

Now, we've built references that allow us to crease the last two diagonal fragments

Finished "clean but practical" PCP

Clean version

Framed Heart — in practice

- more complex case
 - some creases end in the middle of the paper
 - some elements can be constructed only after others
- using edges of paper (box vs tessellation)
- precrease contains creases which are flat in folded model (but hidden)
- perfectly clean precrease not practical to fold
- clean precrease somewhat tedious to fold
- larger molecule benefits more from clean-up

Common techniques

- greedy algorithm: at each step see what can be constructed from what is already there
- all-through creases, short creases, pinches
- dividing a segment into 2 or into 3
- mark crease and elongate later
- copying a segment
 - parallel
 - to an intersecting crease
- using paper edges (if available)
- mostly same tricks for square and hex grid

Challenges

- loss of precision without the grid
- precision depends on precision of paper cut
- errors can accumulate or cancel out
- not all papers allow bending without creasing
- design and folding take more time
- balance between clean fold and practicality
 - sometimes not worth the fuss
 - folding should still be fun

Thank you

Michał Kosmulski

e-mail: michal@kosmulski.org flickr: kosmulski_origami facebook: Michał Kosmulski instagram: mkosmul twitter: mkosmul

